CAPE-OPEN for .Net Class Library

The Cape-Open for .Net class library is a collection of classes that implement the Cape-Open
v.1.0 interfaces in the .Net framework. This is a tool to aid process modeling component (PMC)
developers in producing CAPE-OPEN compliant objects using the latest version of the Visual
Studio integrated development environment.

The installation package will install the class library assembly on your computer, register it with
Visual Studio, and install a class documentation help file that can be access from the Start menu
(click the “Start” button, select “All Programs,” select the “CapeOpen.Net” folder and run the
“Documentation.chm” file.). The documentation file current contains class documentation. It will
be expanded to include a tutorial, which is presented below.

This class library is being distributed for testing and evaluation purposes only. If you have any
comment, please contact Bill Barrett at barrett.williamm@epa.gov.

Disclaimer of Liability:

With respect to the Cape-Open.Net software and documentation, neither the United States
Government nor any of their employees, assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed. Furthermore, software and documentation are supplied "as-is" without guarantee or
warranty, expressed or implied, including without limitation, any warranty of merchantability or
fitness for a specific purpose.

Disclaimer of Endorsement:

Reference herein to any specific commercial products, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United Sates Government. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
Government, and shall not be used for advertising or product endorsement purposes.

Copyright Status:
The U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the

documents and software provided. The software and documentation may be freely distributed
and may be used for testing and evaluation purposes.
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Creation of a Mixer class in C-Sharp

This example will demonstrate the use the Cape-Open.Net class library to create a Mixer unit
operation using the C-Sharp language in Visual Studio.

Step 1: Create the Project. This is a standard process in Visual Studio. From the file menu, you
select “New->Project...:” and complete the “New Project” dialog as shown below. Click the
“OK?” button to create the project.
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Step 2: Add a reference to the Cape-Open.Net class library to the project. This can be initiated

by either clicking the “Project->Add Reference...” menu item or right clicking the “References”
item in the Solution Explorer and selecting “Add Reference...” from the context menu. This will
bring up the “Add References” dialog. Select CapeOpen from the list and click the “OK” button.
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Step 3: The unit operation needs to derive from the CapeOpen.CUnitBase base class and needs
to be marked with the Serializable attribute. The base class implements all required Cape-Open
interfaces for a unit operations except the ICapeUnit.Calculate() method, which will be
implemented below. The Serializable attribute allows the unit to use .Net-based serialization for
persistence (saving to disk). The ComVisible(true) and the GUID attributes are added for
registering the class for COM interop.

Please note, the GUID for each class is a unique identifier. You will need to create a new GUID
using the CreateGUID tool in Visual Studio, as shown below:
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Click the “Copy” button to copy the GUID in registry format, replace the GUID in the GUID
attribute (it will be surrounded by {3}, which need removed). The class library also provides
custom attributes for exposing the CapeDescription registry keys, as shown below. Once
completed, the class will look like this:

[Serializable]
[CapeOpen.CapeDescriptionAttribute("'Mixer example class written in C#.")]
[CapeOpen.CapeVersionAttribute("1.0")]
[CapeOpen.CapeVendorURLAttribute(""http:\\www.epa.gov')]
[CapeOpen.CapeHelpURLAttribute(""http:\\www.epa.gov')]
[CapeOpen.CapeAboutAttribute(*'US Environmental Protection Agency\nCincinnati,
Ohio™)]
[System.Runtime. InteropServices.ComVisible(true)]
[System.Runtime. InteropServices.Guid('8F39966B-6F94-4657-A67D-DAD971C898B4'*)]
public class Classl: CapeOpen.CUnitBase
{
}
}

And building the class should provide the following error:



C:\MixerExample\MixerExample\MixerExample\Class1l.cs(8,18): error CS0534: “MixerExample.Classl-
does not implement inherited abstract member "CapeOpen.CUnitBase.Calculate()"
c:\Program Files\USEPA\CapeOpen\CapeOpen.dll: (Related file)

Step 4: Implement the unit operation constructor and/or initialize method. The parameter and
port collections are created in the CapeOpen.CUnitBase class constructor, which is called prior
to the derived class’s constructor during object creation. However, the CAPE-OPEN
specification states that ports and parameters collections be created in the
ICapeUitilities.Initialize() method and requires that the process modeling environment calls the
unit operation’s ICapeUltilities.Initialize() method prior to using the PMC. The initialize method
is implemented as a virtual function that does nothing in the CapeOpen.CUnitBase class. You
may choose to add ports and parameters in either the Class constructor or the
ICapeUitilities.Initialize() method. Below shows adding the Initialize() method to the unit
operation. The code will look like this:

[Serializable]
[Serializable]
[CapeOpen.CapeNameAttribute("’'MixerExample™)]
[CapeOpen.CapeDescriptionAttribute("'Mixer example class written in C#."")]
[CapeOpen.CapeVersionAttribute("1.0")]
[CapeOpen.CapeVendorURLAttribute(""http:\\www.epa.gov')]
[CapeOpen.CapeHelpURLAttribute(""http:\\www.epa.gov')]
[CapeOpen.CapeAboutAttribute(*'US Environmental Protection
Agency\nCincinnati, Ohio')]
[System._Runtime. InteropServices.ComVisible(true)]
[System.Runtime. InteropServices.Guid(*'8F39966B-6F94-4657-A67D-
DAD971C898B4'*)]
public class Classl: CapeOpen.CUnitBase

{
public Class1()
this.ComponentName = "MixerExample';
this.ComponentDescription = "Mixer easmple class written in C#";

}
public override void InitializeQ)

this.Ports._Add(new CapeOpen.CUnitPort("Inlet Portl",
"Test Inlet Portl™, CapeOpen.CapePortDirection.CAPE_INLET,
CapeOpen.CapePortType.CAPE_MATERIAL));
this.Ports->Add(new CapeOpen.CUnitPort("Inlet Port2",
"Test Inlet Port2", CapeOpen.CapePortDirection.CAPE_INLET,
CapeOpen.CapePortType.CAPE_MATERIAL));
this.Ports->Add(new CapeOpen.CUnitPort(*"Outlet Port™,
"Test Outlet Port", CapeOpen.CapePortDirection.CAPE_OUTLET,
CapeOpen.CapePortType.CAPE_MATERIAL));
this.Parameters->Add(new CapeOpen.CRealParameter(*'PressureDrop",
"Drop in pressure between the outlet from the mixer and the
pressure of the lower pressure inlet.", 0.0, 0.0, 0.0,
100000000.0, CapeOpen.CapeParamModeCAPE_INPUT, *Pa'));
this.Parameters->Add(new CapeOpen.ClntParameter(''Parameter2",
12, CapeOpen.CapeParamMode.CAPE_INPUT_OUTPUT));
this.Parameters->Add(new CapeOpen.CBoolParameter(*'Parameter3",
false, CapeOpen.CapeParamMode.CAPE_INPUT_OUTPUT));
String[] options = { "Test Value', "Another Value" };
this.Parameters->Add(new CapeOpen.COptionParameter("'Parameter4™,



“"OptionParameter', "Test Value', "Test Value'™, options, true,
CapeOpen.CapeParamMode .CAPE_INPUT_OUTPUT));
this.AvailableReports->Add(*'Report 2');

}
}

The constructor sets the unit operation’s ICapeldentification.ComponentName and
ICapeldenfication.ComponentDescription properties. The Initialize() method overrides the base
class method and adds ports and parameters to their respective collections.

Creating Ports: Ports are implemented by the CUnitPort class. This class implements the
ICapeUnitPort and ICapeldentification interfaces. This class has a single contructor, which takes
the following parameters:

String ComponentName (sets the ICapeldentification.ComponentName property)

String ComponentDescription (sets the 1Capeldentification.ComponentDescription property)
CapePortDirection direction (sets the Port Direction property)

CapePortType type (sets the port type property)

Once you have created the port, it can be added to the port collection using the Add() method of
the PortCollection class.

Creating Parameters: There are four (4) types of parameters available, CRealParameter,
CiIntParameter, CBoolParameter, and COptionParameter. Each of these implement the
ICapeldentification, ICapeParameter, and ICapeParameterSpec interfaces, and the appropriate
specification interfaces. The constructors are overloaded (multiple versions) and descriptions of
each constructor is provided in the above described documentation file.

Once you have created the parameter, it can be added to the port collection using the Add()
method of the ParameterCollection class.

Step 5: Implement the unit operation’s “Calculate” method. See the attached “MixerExample.cs”
file for the implementation of a mixer. This example obtains the component flows, pressures, and
enthalpies of the input streams using both the CapeOpen.ICapeThermoMaterialObect interface
and the MaterialObjectWrapper class. The MaterialObjectWrapper class wraps a material object
and converts the variants (objects) to type proper array type for convenience. The example
provided uses the MessageBox.Show method to provide feedback if an exception is encountered,
and requires a reference to the “System.Windows.Forms” assembly be added to your

Step 6: Set the IDE to register the build output. This is done by opening the project properties
page, selecting the “Build” tab and selecting the “Register for COM interop” checkbox. At this
point, the mixer unit operation is available for use in your process simulation application, such as
COFE. It should be noted that by checking the “Register for COM interop” box, the component
is only registered locally. If you would like to distribute the component to other machines, it will
need to be registered with regasm.exe or by creating an installation package.

Open COFE, and select the add unit operation button, and you will see your
MixerExample.Classl in the “Select Unit Operation” dialog, as shown below.
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Select OK, and add the unit operation to the flowsheet:
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Then select a property package and attach materials to the ports.
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Configure the inlet material streams and solve the flow sheet. On starting the unit operation’s
Calculate() method, the ICapeDiagnostic.LogMessage and ICapeDiagnostic.PopUpMessage
methods are called, as can be seen below:
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Ad the unit will calculate:
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DEBUGGING

There are two ways to access the debugger. First, you could select your desired simulation
application as the external program to start on the Debugger property page, as shown:
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And the selected application will start as a host when you select the “Debug->Start Debugging”
menu item.




Alternatively, your can attach to a running process by selecting the “Debug->Attach to process”
menu item, which brings up this dialog box shown below:
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Select the desired application and click the “Attach” button.

The class library will then stop at all breakpoints hit during execution, as shown below:
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Unit Operations Manager

This is an analogous system to the ThermoSystem provided in the Thermodynamics package. It
is intended to allow developers to create unit operations classes that can be developed, tested and
installed on client machines without the need for administrative credentials, required for COM-
based development.

On installation of this package, a directory will be installed in the %program files% (typically,
the “C:\Program Files” directory) named “CapeOpen Objects” (see below).
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The unit operation manager will inspect “CapeOpen Objects” directory and all subdirectories for
assemblies that contain Cape-Open unit operations built from this assembly. Further, if you are
debugging a test unit, the unit operation manager will detect the debugger and locate any unit
operations within the assembly being debugged.

To use the unit operation manager, install this package into the target computer. If you develop a
unit operation as shown above, when you debug it, select the UnitOperationManager from the
flowsheeting environment (as shown below):
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Click OK, and the unit operation selector will be shown:
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You can then select the desired unit and it will be created and inserted into the flowshhet for your
use.



Update History

Version 1.1.2

Added UnitOperationManager class to allow users to access .Net-based units without
requiring the units to be registered with COM.

Update the help file to be more complete, currently distributed as a compiled help file
installed in the application directory..

e Added the Petroleum Fractions interfaces.
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